Théorie des groupes

Feuille d'exercices 12

5 Décembre 2016

Exercice 1 On considère $H = \{(a, b, c), a + b + c = 0\}$ sous-groupe de \mathbb{Z}^3 . Trouver une \mathbb{Z} -base de H.

Exercice 2 Quels sont (à isomorphisme près) les groupes abéliens d'ordre 360?

Exercice 3 (p-groupes abéliens)

Soit $E = (x_i)_{i \in [\![1,k]\!]}$ une famille finie d'éléments de $[\![1,n]\!]$. On dit que E est une partition de n si E est ordonnée $(x_i \le x_{i+1})$ et $\sum_{i=1}^k x_i = n$. Les partitions de n sont en fait les façons d'écrire n comme somme d'entiers positifs.

Exemple: Les partitions de 5 sont: (1, 1, 1, 1, 1); (1, 1, 1, 2); (1, 2, 2); (1, 1, 3); (2, 3); (1, 4); (5).

Soit p premier. Montrer que le nombre de groupes abéliens d'ordre p^n est égal au nombre de partitions de n en entiers.

Il est intéressant de noter que cette quantité est indépendante de p.

Exercice 4 (Sous-groupes de $(\mathbb{Z}/p\mathbb{Z})^n$)

Soit p premier et G isomorphe à $(\mathbb{Z}/p\mathbb{Z})^n$. Combien G a-t-il de sous-groupes d'ordre p^k $(k \in [1, n-1])$. Donner une formule explicite en fonction de p, k, n.

Indication : Voir G comme un $\mathbb{Z}/p\mathbb{Z}$ *-espace vectoriel*

Exercice 5

Soit G un groupe abélien de type fini.

- 1. Montrer que Aut(G) est dénombrable.
- 2. Montrer que Aut(G) est fini si et seulement si la décomposition canonique G contient au plus un facteur isomorphe à \mathbb{Z} .

Exercice 6 (Groupe libre)

1. Soit G un groupe agissant sur un ensemble E. Supposons qu'il existe deux ensembles disjoints non-vides E_1 et E_2 dans E et deux éléments g et h dans G tels que :

$$\forall k \in \mathbb{Z}^*, \quad g^k(E_1) \subset E_2, \ h^k(E_2) \subset E_1$$

On note A l'ensemble des mots en g, h, g^{-1} et h^{-1} .

Un mot de A est dit réduit si l'on a effectué toutes les simplifications du type $g.g^{-1}=e$. possibles. Par exemple, $ghg^{-1}h^4g^{-1}$ est réduit, mais pas $ghgg^{-1}h$, qui lui est égal au mot réduit gh^2 . on note Σ l'ensemble des mots réduits.

Montrer qu'aucun mot non-trivial de Σ n'est égal à l'élément neutre. C'est à dire que $\langle g, h \rangle = \Sigma$. On dit alors que $\langle g, h \rangle$ est **libre**.

2. Montrer que Γ le sous-groupe de $\mathrm{SL}(2,\mathbb{Z})$ engendré par $A=\left(\begin{array}{cc} 1 & 2 \\ 0 & 1 \end{array}\right)$ et $B=\left(\begin{array}{cc} 1 & 0 \\ 2 & 1 \end{array}\right)$ est libre.

1

Indication : Faire agir Γ *sur* \mathbb{R}^2

Exercice 7 (Automorphismes de D_n) Soit $n \geq 3$.

On note r une rotation et s une symétrie telles que $D_n = \langle r, s \rangle$.

On considère l'action naturelle de $Aut(D_n)$ sur D_n .

- 1. Montrer que $Card(\operatorname{Stab}_{\operatorname{Aut}(D_n)}(s)) = \varphi(n)$. (φ étant l'indicatrice d'Euler)
- 2. Montrer que $Card(\operatorname{Stab}_{\operatorname{Aut}(D_n)}(r)) = n$.
- 3. Montrer que $\operatorname{Stab}_{\operatorname{Aut}(D_n)}(r) \lhd \operatorname{Aut}(D_n)$.
- 4. Montrer que $\operatorname{Aut}(D_n) = \operatorname{Stab}_{\operatorname{Aut}(D_n)}(r) \rtimes \operatorname{Stab}_{\operatorname{Aut}(D_n)}(s)$
- 5. En déduire le cardinal de $Aut(D_n)$.
- 6. Montrer que pour tout groupe G, $\operatorname{Int}(G) \cong G/Z(G)$.
- 7. Cas n=3. En déduire que $Aut(D_3) \cong D_3$.

Exercice 8 (Simplicité de \mathfrak{A}_n pour $n \geq 5$) On note H un sous-groupe distingué non-trivial de \mathfrak{A}_n .

- 1. Montrer que si H contient un 3-cycle, alors $H = \mathfrak{A}_n$.
 - On définit $N = max_{\gamma \in H, \gamma \neq Id}(|Fix(\gamma)|)$, le nombre maximal de points fixes d'une permutation nontriviale de H, et σ un élément de H réalisant ce maximum. Le but est de démontrer que σ est un 3-cycle. On va distinguer deux cas selon la décomposition de σ en cycle disjoints.
- 2. Si σ est un produit de transpositions à supports disjoints. On peut supposer $\sigma=(12)(34)\dots$ En posant $\tau=(345)$, et $\rho_1=\tau\sigma\tau^{-1}\sigma^{-1}$, montrer que $\rho_1\in H$, que $\rho_1\neq Id$ et a strictement plus de points fixes que σ .
- 3. Si σ contient au moins un cycle de longueur supérieure à 3, mais n'est pas un 3-cycle. On peut supposer que la décomposition de σ est $\sigma = (123...)\gamma_2...\gamma_k$.
 - Justifier qu'il y a au moins deux éléments différents de 1,2 et 3 qui ne sont pas fixés par σ . On peut supposer que c'est 4 et 5.
 - En posant $\tau=(345)$, et $\rho_2=\tau\sigma\tau^{-1}\sigma^{-1}$, montrer que $\rho_2\in H$, que $\rho_2\neq Id$ et a strictement plus de points fixes que σ .
- 4. Conclure.